Batch seismic inversion using the iterative ensemble Kalman smoother

نویسندگان

چکیده

Abstract An ensemble-based method for seismic inversion to estimate elastic attributes is considered, namely the iterative ensemble Kalman smoother. The main focus of this work challenge associated with waveform data. amount data large and, depending on size, it cannot be processed in a single batch. Instead solution strategy partitioning recordings time windows and processing these sequentially suggested. This demonstrates how can done adaptively, reliable efficient estimation. adaptivity relies an analysis update direction used procedure, interpretation contributions from prior likelihood update. idea that must balance; if dominates, estimation process inefficient while likely overfit diverge dominates. Two approaches meet balance are formulated evaluated. One based eigenvalue distributions enters affects weighting contributions. other balancing norm magnitude vector components Only latter found sufficiently regularize window. Although no guarantees avoiding divergence provided paper, results adaptive procedure indicate robust performance achieved

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Iterative Ensemble Kalman Smoother: the Best of Both Worlds?

Data assimilation seeks a mathematically optimal compromise between outcomes of a numerical model that simulates a physical system and observations of that system. It has been successfully used for twenty years in operational meteorology to perform the best forecast, and is now being used or tested in many geoscience fields. Two main classes of methods have taken the lead. Firstly, 4D-Var is a ...

متن کامل

The Analog Ensemble Kalman Filter and Smoother

In classical data assimilation using sequential Monte Carlo methods, a physical model is run at each time steps to simulate members corresponding to different forecast scenarios. In this paper, we propose to use statistical analogs provided by observational or model-simulated data to emulate the dynamical model and generate relevant forecast members. This new methodology is called AnEnKF/AnEnFS...

متن کامل

An Ensemble Kalman Smoother for Nonlinear Dynamics

It is formally proved that the general smoother for nonlinear dynamics can be formulated as a sequential method, that is, observations can be assimilated sequentially during a forward integration. The general filter can be derived from the smoother and it is shown that the general smoother and filter solutions at the final time become identical, as is expected from linear theory. Then, a new sm...

متن کامل

Joint state and parameter estimation with an iterative ensemble Kalman smoother

Both ensemble filtering and variational data assimilation methods have proven useful in the joint estimation of state variables and parameters of geophysical models. Yet, their respective benefits and drawbacks in this task are distinct. An ensemble variational method, known as the iterative ensemble Kalman smoother (IEnKS) has recently been introduced. It is based on an adjoint model-free vari...

متن کامل

An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation

This paper proposes a methodology for combining satellite images with advection-diffusion models for interpolation and prediction of environmental processes. We propose a dynamic state-space model and an ensemble Kalman filter and smoothing algorithm for on-line and retrospective state estimation. Our approach addresses the high dimensionality, measurement bias, and nonlinearities inherent in s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geosciences

سال: 2021

ISSN: ['1573-1499', '1420-0597']

DOI: https://doi.org/10.1007/s10596-021-10043-4